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a b s t r a c t

As the basic data for virtual auditory technology, head-related transfer function (HRTF)

has many applications in the areas of room acoustic modeling, spatial hearing and

multimedia. How to individualize HRTF fast and effectively has become an opening

problem at present. Based on the similarity and relativity of anthropometric structures,

component analysis (PCA), multiple linear regression (MLR) and database matching

(DM), has been presented in this paper. The HRTFs selected by both the best match and

the worst match have been applied into obtaining binaurally auralized sounds, which

are then used for subjective listening experiments and the results are compared. For the

area in the horizontal plane, the localization results have shown that the selection of

HRTFs can enhance the localization accuracy and can also abate the problem of front–

back confusion.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Defined as ‘‘the ratio of the Fourier transform of the signal at the listener’s eardrum to that at the center of the listener’s
head with the listener absent’’, head-related transfer function (HRTF) and its corresponding impulse response, head-related
impulse response (HRIR), are essential components of many approaches to binaurally based spatial audio synthesis. They
describe the changes in the sound wave as it propagates from a spatial sound source to the human eardrums [1]. The
acquisition of accurate binaural HRTFs is crucial to the generation of 3D sound. Because of the individual difference of
anthropometric shape and size, HRTF varies with frequencies, directions and subjects [2]. Unfortunately, it is difficult and
time consuming to measure HRTF, and is not feasible to obtain the binaural HRTFs for an arbitrary listener. Therefore, how
to individualize HRTF fast and effectively becomes an opening problem.

In the recent years, more and more researchers have concentrated on the individualization of HRTF. Besides the direct
measuring method, calculating by boundary element method (BEM) is also a way that can obtain good accuracy [3].
However, these two types of methods are very time consuming and are difficult to implement in the study of auralization.
Some researchers tried to find the relationship between the anthropometric structures of the subject and the
corresponding HRTFs, from which some simpler ways could be found to predict the personalized HRTFs. Several types
of prediction algorithms have been brought forward, such as database matching [4], principal component analysis [5],
structure modeling [6,7] and other statistical approaches [8,9]. Some of these approaches are faster while others are more
accurate [10]. However, in our study on real-time auralization for room acoustic modeling, the binaural information is
ll rights reserved.
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necessary for an arbitrary listener. To save computation time we need an improved individualization approach, which is
effective as well as accurate. Since the direct measurement for each listener is quite time consuming and not practical, we
hope to provide well-performing HRTFs of a listener based on just a few measurements on him. The basis of our method
includes two aspects: one is that there is similarity in various persons’ anthropometric structures; another is that only part
of the anthropometric parameters are crucial to the spatial hearing.

For simplicity and effectiveness of database matching method, we think it can be improved as a practical approach for
our applications in auralization. To select HRTFs for any listener from a measured database, we present a hybrid algorithm
that combines the method of principal component analysis, multiple linear regression analysis and database matching.
First, we use principal component analysis to decompose HRTFs and extract the characteristic parameters. Then we use
multiple linear regression to analyze the relationship between HRTFs and the anthropometric parameters and to find the
reference parameters. Last, we use database matching algorithm to find the closest HRTFs for the listener. The algorithm
has been tested by subjective localization experiments using auralized sounds produced by the convolution of dry sound
and the selected HRTFs. In our current research, only the horizontal plane data are used for database matching and
listening tests. The detailed algorithm will be presented in the next section.

2. Methodology

Since there are a number of anthropometric parameters related to human’s hearing, the core of the hybrid algorithm is
to find the most crucial anthropometric parameters (as reference parameters). Once they have been found, the main job
that needs to be done in applications is to measure them and use them for database matching in order to find the best
matched HRTFs.

The structure of the algorithm is shown in Fig. 1. Firstly, the direction transfer function (DTF) can be calculated from the
measured HRTFs. Secondly, the characteristic parameters can be extracted using principal component analysis. Thirdly,
correlation analysis and multiple linear regression analysis are used to find the relationship between the characteristic
parameters and the anthropometric parameters. Finally, the significant ones of these anthropometric parameters are
chosen as the reference parameters for database matching.

2.1. Principal component analysis on direction transfer function

Principal component analysis (PCA) is a statistical method based on the Gaussian distribution of random variable, which
has been applied into the analysis of HRTF [11–13]. In this paper the PCA method is not applied directly on HRTF, but on
the direction transfer function (DTF), which is obtained by subtracting the mean of log-magnitude response of HRTF from
each log-magnitude response. According to Wightman’s report [12], mean HRTF log-magnitude function includes not only
the subject-dependent and direction-independent spectral features shared by all HRTFs recorded from an individual ear,
but also the measurement artifacts such as the spectral notches caused by standing waves. Therefore, extracting the DTF
from HRTF can effectively eliminate the component that is sensitive to the position of the microphone in the standing wave
pattern of the ear canal and retained the directional component.

The HRTF data we have used are derived from the CIPIC database, which includes HRIRs of 45 subjects at 25 different
azimuths and 50 different elevations [14]. We select 35 subjects and turn their horizontal plane HRIRs into HRTFs as the
data source. Each HRTF ranged from 0 to 22.05 kHz and has N=100 discrete points.

Suppose the kth azimuth HRTF data from horizontal plane of the ith subject is Hi,kðf Þ, i¼ 1,2, . . . ,35, k¼ 1,2, . . . ,25,
then all HRTFs data can be described as a i�k column matrix [H]i,k:

½H�i,k ¼ ½H1,1ðf ÞH1,2ðf Þ � � �H1,25ðf Þ � � �H35,1ðf ÞH35,2ðf Þ � � �H35,25ðf Þ� (1)

To calculate the DTF, we can compute the mean value of log-HRTFs from each direction:

Hav,logðf Þ ¼
20
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Fig. 1. Workflow of the hybrid algorithm.
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Here, Hav,logðf Þ is the N by 1 matrix. Subtracting the mean value of each log-magnitude response of HRTFs we can obtain
the corresponding DTFs, which represent primarily direction-dependent spectral effects:

HDðyk,fNÞ ¼ 20lgjHiðyk,fNÞj�
20

i� k

X35

i ¼ 1

X25

k ¼ 1

lgjHiðf Þj, i¼ 1,2, . . . ,35, k¼ 1,2, . . . ,25 (3)

Similarly, DTFs from all M spatial directions can be described as an N by 1 matrix [Hl]N�M. Then we can calculate the
covariance matrix [R]:

½R�N�N ¼
1

M
½Hl�N�M½Hl�

þ
M�N (4)

where [R] is the N by N Hermite matrix, and its eigenvalue is real. Its eigenvector is extracted and arranged as the
eigenvalue reduced-order u1, u2,y, uQ. Then the front Q eigenvector is taken out as the base-vectors (which are described
as PCs) and to build a matrix:

½D�N�Q ¼ ½u1,u2, . . . ,uQ � (5)

Because u1, u2,y, uQ are orthogonal, by the use of these base-vectors we can decompose [Hl]N�M, and then get the
weight matrix accordingly

½W�Q�M ¼ ½D�
þ
Q�N½Hl�N�M (6)

Finally, we can predict all of the spatial directions of DTFs as

½Ĥl�N�M ¼ ½D�N�Q ½W�Q�M (7)

The more the PCs are used, the better the accuracy we can get.
Fig. 2 shows the results of principal component analysis on a left ear’s DTF. From the figure we can see that using 8 PCs

we can reconstruct more than 90% accuracy of the original DTF. In this paper we use 8 PCs to predict DTF and they can
explain more than 90% of the total variability.

2.2. Multiple linear regression analysis

Suppose in the spatial direction y, the relation between PCs and the corresponding anthropometric measurement is

wy ¼XByþEy (8)

where wy represents the weight vector of the DTFs in the spatial direction y; By is the regression coefficients matrix; X is
the anthropometric measurements matrix; and Ey is the estimation errors matrix.

Once we have obtained the anthropometric measurement matrix and the corresponding weight vector, the regression
coefficients matrix By can be predicted as follows:

By ¼ ðX
TXÞ�1XTwy (9)

As the above equation described, the regression coefficients matrix By depends on the anthropometric measurements
matrix X and the weight vector wy. Since there are usually a number of anthropometric parameters in a measured
database, it is obviously unadvisable and unreasonable to introduce all of them into the MLR model because there are
different correlations between them and the DTFs. Some useful information might be concealed by the unnecessary
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parameters, which will lead to a worse regression model. Thus, we have to make a choice from them. Furthermore,
eliminating the unnecessary anthropometric parameters can directly alleviate the complexity of the system; thus we can
alleviate the workload of the individualization process.

2.3. Selection of anthropometric parameters

We can take three steps to select the anthropometric parameters as reference parameters. First, a large number of
correlation analyses are done on different anthropometric parameters. For the two different parameters that have large
linear correlation coefficients, we can reserve the one that has more significant influence. Then, in order to delete the
anthropometric parameters that have smaller correlation coefficient, the correlation analysis is applied to the remaining
anthropometric parameters and DTFs. Third, the selected anthropometric parameters are applied into the multiple linear
regression model in which F-test and backward selection at significant level a=0.05 will be applied to delete the
insignificant parameters .

The process of F-test is as follows [15]. Considering the linear regression model

Y¼Xbþe (10)

where X is an n by p full rank matrix of known constant, Y is an n-vector of response, b is a p-vector of unknown parameter,
and e is an n by 1 unobservable error with a normal distribution N(0, s2In). We assume that a hypothesis in model (10)
is given by H0:Ab=c, where A is a known q by p matrix with rank q and c is a q by 1 vector. The usual test for hypothesis H0

is F-test.
F-test is equivalent to the likelihood ratio test. The test statistic F-statistic is given by

F ¼
1

qŝ2
ðc�Ab̂Þ0½AðX0XÞ�1A0��1ðc�Ab̂Þ (11)

where b̂ ¼ ðX0XÞ�1X0Y is a least-squares estimate of b, and s2=Y0(In�Px)Y/(n�p) is an unbiased estimator of s2 in model
(10), where Px=X(X0X)�1X0. When H0 holds the F-statistic equation (11) distributes as an F distribution with degrees of
freedom q and (n�p).

When the F-statistic has been calculated, we can use backward selection to select the significant parameters. First, all of
the parameters are put in the regression model, then we can calculate F-statistic of each parameter and compare them to
the one at the significant level a=0.05. After deleting the most insignificant one, we can put the rest into the model again
and delete the insignificant one. The process is repeated until all of the rest parameters are significant at the significant
level.

After all of the three steps of the selection process, the anthropometric parameters remained can be used as the
reference parameters in the following database matching algorithm.

2.4. Database matching

Database matching depends on the similarity of anthropometric structures between the listener and the subject from
the database. It aims to select the most appropriate HRTFs from the database for a listener. Matching is performed
separately for the left and the right ears, which sometimes leads to the selection of the left and right HRTFs belonging to
two different database subjects [16]. Suppose the measured value is d̂i and the database value is di. Then the parameter
error is calculated as follows:

ei ¼
ðd̂i�diÞ

varðdiÞ
(12)

The total error is calculated by Eq. (13) and the subject that corresponds to the minimal total error E is selected as the
closest match

E¼
X

ei
2 (13)

In the above matching process, the listeners’ anthropometric parameters of ears are measured from digital photographs
and other parameters are measured directly by a ruler. Fig. 3 shows the measurement of an ear.

3. Experimental research

3.1. Selection of HRTF

The CIPIC database we used contains HRIRs of 45 subjects and 43 of them have the measured anthropometric
parameters, along with some other information about the subjects [17]. The anthropometric information in the database
consists of 27 measurements per subject—17 for the head and the torso (x1–x17) and 10 for the pinna (d1–d8, y1, y2).
Considering there may be a relation among the anthropometric structures and spatial directions, we select 35 subjects that
have completed anthropometric parameters, using their horizontal plane data as the database for matching.
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Fig. 3. Measurement of anthropometric parameters.

Table 1
Processing steps for the selection of HRTF.

Processing procedure Results

Principal component analysis Weight vector

Correlation analysis between different anthropometric parameters d2, d3, d5, d6, d8, y2, y2, x1�x5, x7, x9, x12, x14

Correlation analysis between weight vector and remaining anthropometric parameters d2, d3, d5, d6, d8, x1�x5, x7, x9, x12, x14

Multiple linear regression d2, d3, d5, d6, x1�x5, x7, x9, x12, x14

Database matching Selected HRTFs
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Fig. 4. Correlation coefficients of the anthropometric parameters.
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As described in the above sections, we can acquire the reference parameters by PCA, CA and MLR, and then measure the
corresponding parameters of the listeners. Using database matching the closest subject’s HRTFs can be selected as the
individualized HRTFs. The process is shown in Table 1.

Fig. 4 shows the gray image of correlation coefficients larger than 0.6 (theta1, theta2 represent y1, y2 separately in the
figure). From the figure we can find that there are large correlations between some parameters, for example, pinna height
d5 and neck width x6. Considering the pinna height has more obvious influence on the scattering and reflection of incoming
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sound, we delete x6 to reduce the number of variables. In this way, we can select d2, d3, d5, d6, d8, y1, y2, x1–x5, x7, x9, x12, x14.
After this, the correlation analysis is used for the weight vector and for the remaining anthropometric parameters. Then,
the insignificant anthropometric parameters (here, y1, y2) are deleted. By using the multiple linear regression model we
can delete the less significant parameters and choose d2, d3, d5, d6, x1–x5, x7, x9, x12 and x14 (representing cymba concha
height, cavum concha width, pinna height, pinna width, head width, head height, head depth, pinna offset down, pinna
offset back, neck height, torso top width, shoulder width and height, respectively) as the reference parameters. Finally, we
use database matching to select the closest match for each listener and use the closest one’s HRTFs as those of the listener.
3.2. Sound localization experiment

When a listener hears a sound filtered by HRTFs measured from his/her own ears, an immersive ‘‘virtual acoustic
environment’’ results. The listener feels that the sound appears to originate from well-designed directions in the 3D space
surrounding the listener. Thus the individualization accuracy can be evaluated by sound localization experiments. For
comparing, we also take the worst match (corresponding to the maximize E in Eq. (13)) of HRTFs for each subject.

Nine subjects aged from 23 to 27 with normal hearing took part in our experiments. The testing sounds are made by
convoluting a 0.25 s burst of white noise and the selected HRIRs. During the tests, the sounds are repeated 8 times, with
0.25 s of silence between repetitions. In total 22 target azimuths are selected from the horizontal plane (see Fig. 5). Then
the testing sound from a randomly chosen azimuth is played back through the headphone. After this, the subjects are asked
to judge the azimuth of the testing sound and write it down by degree on the diagram. When a listener has accomplished
this process, a new testing azimuth by the worst matched HRTFs will be selected to repeat the process. The process was
repeated until all azimuths by the best and worst matched HRTFs are achieved. The localization experiment continues until
both the best and worst matched HRTFs are repeated 9 times. Between repetitions there is at least a 30 min rest.
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Fig. 5. Twenty-two target azimuths in the horizontal plane.
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Fig. 7. Localization results of subject 2: (a) using the worst matched HRTFs and (b) using the best matched HRTFs.
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Fig. 8. Localization results of subject 3: (a) using the worst matched HRTFs and (b) using the best matched HRTFs.
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Fig. 9. Localization results of subject 4: (a) using the worst matched HRTFs and (b) using the best matched HRTFs.
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Figs. 6–14 show the results of the localization experiments of all the 9 subjects by using the worst and best matched
HRTFs. Each square in the plot represents the subject’s individual location judgment for each target location. As illustrated
in the legend, the size of the square represents the number of judgments at that location. For example, the smallest symbol
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Fig. 10. Localization results of subject 5: (a) using the worst matched HRTFs and (b) using the best matched HRTFs.

-200 -150-100 -50 0 50 100 150 200
-200

-150

-100

-50

0

50

100

150

200

Ju
dg

ed
 P

os
iti

on
 (d

eg
)

-200 -150-100 -50 0 50 100 150 200
-200

-150

-100

-50

0

50

100

150

200

Target Position (deg)

Ju
dg

ed
 P

os
iti

on
 (d

eg
)

Target Position (deg)

Fig. 11. Localization results of subject 6: (a) using the worst matched HRTFs and (b) using the best matched HRTFs.
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Fig. 12. Localization results of subject 7: (a) using the worst matched HRTFs and (b) using the best matched HRTFs.
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Fig. 13. Localization results of subject 8: (a) using the worst matched HRTFs and (b) using the best matched HRTFs.
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Fig. 14. Localization results of subject 9: (a) using the worst matched HRTFs and (b) using the best matched HRTFs.
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in the legend illustrates the case when 10% of the judgments occur in that particular response location. Note that the scale
is the same in these plots.

Perfect correlation between target position and response judgment corresponds to a diagonal slope of +1.0 on these
graphs, and this means that the subject’s judgments are exactly the same as the real directions. On the other hand, two
short negative diagonals (slope of �1.0) running from target-response coordinates of �180, 0 to 0, �180 and 0, 180 to
180, 0 (�90, 0 to 0, �90 and 0, 90 to 90, 0 for elevation) correspond to front–back confusions, and the regions around these
two lines correspond to the region where the different types of confusions would fall. To facilitate plotting, target and
response positions in the left hemisphere are shown as negative numbers.

Unfortunately, we can find some left/right confusions in the figures, which seem abnormal. We have summed the total
number of left/right confusions for all the cases, which shows that for best matched HRTFs there are no such confusions
and for the worst matched HRTFs the confusion ratio is below 2%. This means the best match is really more reliable than
the worst match. We think there might be two possible reasons for the existence of 2% confusions: one is the worst match
because the results in the later part (Tables 4–6) have shown that the worst matched HRTFs do not perform as good as
those of the best match; the other is the subject’s carelessness since each listener had to test 396 spatial sounds in the
experiment, which might make some of them feel tired.

As a supplement to the data of Figs. 6–14 and also for comparing, we have calculated the average angle of error, mean of
the standard deviation of the error, inverse kappa (k�1), and the front–back confusion rate as Wightman did [18,19]. The
results are listed in Table 2. The average angle of error is the mean of the unsigned angles between each judgment vector
and the vector from the origin to the actual (or synthesized) target position. Standard deviation is the mean of the standard
deviation of the absolute localization error. The k�1 is a measure of the dispersion of the data. Because the difference
between the real direction and that judged by the subject is usually large when the front–back confusion phenomenon
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Table 2
Statistical results of the localization experiment.

Listener HRTF data Average angle (deg.) Standard deviation (deg.) k�1 Front–back confusion (%)

subject1 worstmatch 19 22 0.05 21

bestmatch 18 14 0.03 15

subject2 worstmatch 23 29 0.09 23

bestmatch 19 25 0.04 13

subject3 worstmatch 28 36 0.11 25

bestmatch 22 15 0.04 16

subject4 worstmatch 37 46 0.10 33

bestmatch 24 15 0.06 19

subject5 worstmatch 23 35 0.06 35

bestmatch 15 13 0.02 18

subject6 worstmatch 24 26 0.09 34

bestmatch 20 17 0.06 19

subject7 worstmatch 18 17 0.02 32

bestmatch 18 13 0.02 18

subject8 worstmatch 24 26 0.09 35

bestmatch 20 17 0.06 19

subject9 worstmatch 37 46 0.10 34

bestmatch 24 15 0.06 19

Table 3
Statistical results for comparing.

Region HRTF data Angle of error (deg.) k�1 Front-back confusion (%)

Front Wightman 21.5 0.05 7

Database matching 21.0 0.05 9

Side Wightman 15.1 0.03 8

Database matching 14.7 0.04 22

Back Wightman 19.7 0.05 2

Database matching 24.6 0.05 19
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appears, similar to the algorithm in Ref. [18], we have corrected the reversals for statistical analysis, and list the front–back
confusion out separately in Table 2. This can efficiently reduce the mean absolute error and its standard deviation but with
little change of the front–back confusion rate. From the table we can see that at the best match condition the front–back
confusion rates are 13–19% and the mean is 17%.

Because the test sounds that Wightman used in Refs. [18,19] also contain the elevation information, we use the middle
elevation (elevation 01, 181) results of headphone conditions in Ref. [19] as the comparing data. Table 3 lists the mean
absolute localization errors, inverse kappa and proportion of reversals for the two algorithms.

From Table 3 we can see that for inverse kappa the two algorithms have no significant difference. Regarding the mean
absolute localization error and proportion of reversals, the database matching method we proposed does not seem as good
as the Wightmans in Ref. [19] except for the front region. The possible reason is that the HRTF data in Ref. [19] are the
measured data of the listener’s own while the data we obtained are predicted. For the algorithm in Ref. [18], the front–back
confusion rate of the headphone conditions is 29%, and the mean absolute localization errors and inverse kappa for the
three regions are about 20–251 and 0.05–0.9, respectively (there is no accurate value in Ref. [18]; the value used here is
read from the plot). In this case, the performance of the database matching method we proposed is better.
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As for the efficiency of obtaining individualized HRTFs, the time-consuming process of our algorithm is to measure
some anthropometric parameters, which will cost about 5–8 min for a listener. This is similar to some other algorithms, but
because there is the parameter selection process in our algorithm, it can balance the accuracy and efficiency. Other jobs of
the method can all be fulfilled by the computer and only cost several seconds of time. Compared with other
individualization methods such as direct measurement and theoretical calculation, this improved database matching
method has acceptable accuracy but is much quicker and does not need many experimental facilities. Therefore, if we can
get the anthropometric parameters of any listener, they can be applied to the personalized auralization of sound fields in
rooms.

Tables 4–6 show the regional averages for the average angle of error, k�1 and standard deviation of error for the 9
subjects. ‘Best’ represents the best match condition and ‘worst’ represents the worst match condition. The front region
azimuths range from �45 to 451. The back region represents the azimuth ranging from �135 to �165 and from 135 to
180 degree. The remaining azimuths are contained in the side region. We use the Wilcoxon rank sum test to examine the
mean localization error of all subjects at the best match and worst match conditions. The results have shown that at the
significant level a=0.05 the mean localization error has a significant difference. As shown in Table 4, the average errors of
Table 4
Regional averages for the average angle of error.

Region HRTF data Average angle of error (deg.)

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9

Front best 19.68 20.40 26.42 28.89 11.98 16.35 19.68 16.35 28.89

worst 21.03 33.65 33.10 35.08 13.97 21.83 16.74 21.83 35.08

Side best 12.43 9.86 15.63 13.75 21.81 16.25 12.43 16.25 13.75

worst 11.04 13.40 27.36 21.25 22.85 22.43 11.60 22.43 21.25

Back best 21.67 27.14 23.33 30.00 10.95 27.78 22.94 27.78 30.00

worst 26.98 24.37 24.84 56.98 30.87 28.33 25.79 28.33 56.98

Table 6
Regional averages for the standard deviation of error.

Region HRTF data Standard deviation of error (deg.)

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9

Front best 15.70 8.44 12.99 8.55 9.40 11.77 8.44 11.77 8.55

worst 18.20 17.30 19.23 7.61 13.09 15.00 9.38 15.00 7.61

Side best 11.74 9.87 12.38 6.63 9.70 13.58 9.87 13.58 6.63

worst 17.28 11.99 38.06 18.42 7.81 19.49 11.82 19.49 18.42

Back best 23.68 13.68 13.36 13.78 7.83 16.35 12.25 16.35 13.78

worst 19.22 12.42 22.47 32.71 20.27 23.18 11.28 23.18 32.71

Table 5
Regional averages for the k�1.

Region HRTF data k�1

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9

Front best 0.02 0.06 0.05 0.08 0.02 0.04 0.02 0.04 0.08

worst 0.09 0.13 0.13 0.09 0.08 0.06 0.02 0.06 0.09

Side best 0.02 0.03 0.04 0.03 0.02 0.05 0.02 0.05 0.03

worst 0.03 0.07 0.15 0.10 0.01 0.09 0.03 0.09 0.10

Back best 0.03 0.04 0.03 0.08 0.01 0.10 0.03 0.10 0.08

worst 0.03 0.07 0.06 0.10 0.09 0.11 0.02 0.11 0.10
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the best match condition are always smaller than those at the worst match condition, and this means that for the Wilcoxon
rank sum test at the significant level a=0.05 the localization performance of best match condition is significantly better
than that of the worst match condition.

From Tables 4–6 we can also see that for most subjects, the regional averages for the average angle of error and k�1

have a better performance in the best match condition than that in the worst match condition. For subjects 1 and 7 the
performance did not seem to change too much. In some regions (Sub 1 on the side region, Sub 2 on the back region and
Sub 7 on the front and side regions), the worst matched results seem better than the best matched results, although the
difference is not big. But from Table 2 we can see that even for these subjects, the front–back confusion rates decrease
evidently when using the best matched HRTFs.

3.3. Analysis of ITD

Since ITD is an important cue for the horizontal plane localization behavior, we have calculated the ITDs of two arbitrary
subjects in the database to test the feasibility of our method. Fig. 15 shows the difference between measured and predicted
ITDs of the subjects.

From the figures we can see that for the two subjects, the predicted ITDs at best match condition are closer to the real
value. The mean absolute errors of ITDs at best/worst matched condition are 0.0214/0.0582 and 0.0372/0.1127 ms,
respectively. The mean absolute errors at best match condition are smaller and are less than 0.1 ms.

According to the above figures and all the data describing the relationship between ITDs and localization directions, we
can roughly estimate that the ITD difference of 0.1 ms will lead to the interval of about 151 for source localization.
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Fig. 15. Measured and predicted ITDs: (a) sub003 and (b) sub065.
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Table 7
Mean absolute error of best/worst ITD.

Subject Best matched ID Mean error of ITD (ms) Worst matched ID Mean error of ITD (ms)

Left Right Left Right

Sub003 Sub044 Sub044 0.0214 Sub018 Sub018 0.0582

Sub010 Sub048 Sub048 0.0215 Sub003 Sub162 0.0616

Sub018 Sub040 Sub156 0.0795 Sub050 Sub050 0.0578

Sub020 Sub058 Sub154 0.0988 Sub126 Sub018 0.1053

Sub027 Sub152 Sub058 0.0577 Sub003 Sub162 0.0401

Sub028 Sub152 Sub027 0.0515 Sub126 Sub135 0.0557

Sub033 Sub59 Sub058 0.0559 Sub126 Sub018 0.0951

Sub040 Sub126 Sub126 0.0398 Sub003 Sub050 0.0664

Sub044 Sub124 Sub147 0.0459 Sub018 Sub018 0.0497

Sub048 Sub061 Sub061 0.0207 Sub028 Sub028 0.0367

Sub050 Sub134 Sub003 0.055 Sub018 Sub018 0.0578

Sub051 Sub134 Sub134 0.0341 Sub018 Sub018 0.0264

Sub058 Sub065 Sub027 0.0966 Sub018 Sub018 0.0441

Sub059 Sub152 Sub033 0.0611 Sub126 Sub148 0.1227

Sub060 Sub061 Sub061 0.0432 Sub050 Sub028 0.0664

Sub061 Sub048 Sub048 0.0207 Sub050 Sub028 0.0863

Sub065 Sub147 Sub147 0.0372 Sub126 Sub018 0.1127

Sub119 Sub048 Sub133 0.0241 Sub028 Sub028 0.0299

Sub124 Sub127 Sub119 0.0475 Sub018 Sub018 0.0341

Sub126 Sub040 Sub040 0.0398 Sub050 Sub050 0.0532

Sub127 Sub134 Sub134 0.029 Sub028 Sub018 0.0383

Sub131 Sub135 Sub135 0.0255 Sub033 Sub028 0.0822

Sub133 Sub119 Sub119 0.0287 Sub018 Sub028 0.0316

Sub134 Sub127 Sub058 0.0571 Sub018 Sub018 0.0469

Sub135 Sub131 Sub131 0.0255 Sub033 Sub028 0.0879

Sub137 Sub119 Sub065 0.0535 Sub033 Sub028 0.097

Sub147 Sub065 Sub134 0.0694 Sub018 Sub018 0.0432

Sub148 Sub048 Sub048 0.0317 Sub033 Sub028 0.0834

Sub152 Sub027 Sub027 0.0381 Sub126 Sub162 0.1073

Sub153 Sub027 Sub033 0.0609 Sub003 Sub044 0.0773

Sub154 Sub027 Sub152 0.0736 Sub003 Sub044 0.0934

Sub155 Sub124 Sub027 0.0348 Sub059 Sub162 0.0781

Sub156 Sub018 Sub010 0.0481 Sub050 Sub050 0.0492

Sub162 Sub020 Sub058 0.0523 Sub018 Sub018 0.0502

Sub163 Sub027 Sub058 0.0808 Sub126 Sub018 0.1029
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Fig. 16. ITD of the subjects participated in the localization test.
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To consider the relationship of ITDs and localization results, we have calculated the ITDs of all the listeners based on
their personalized HRTFs. The mean value of ITDs and that of subject 1 are compared in Fig. 16. For clarity, we also inserted
the variance error bar to the mean plot. It can be found that the trend of ITD with the change of angles for different listeners
is similar and is consistent with that of the results in Fig. 15.
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In Table 7 the best/worst matching results of 35 subjects in the CIPIC database are listed. It can be found that in most cases
for both the best match and the worst match, the matched HRTFs of left and right ears belong to different subjects in the
database. This is because our algorithm matches the HRTF of the left and right ears, respectively. It can also be found that in
most cases different subjects chose different parts of HRTFs. Only 3 subjects chose the same subject (ID 048) at the condition of
best match, while 9 subjects chose the same subject (ID 018) at the condition of worst match. From the mean error of ITD, it can
be easily found that the mean errors at the best match are usually smaller than those of the worst match and all the mean
errors at the best match are less than 0.1 ms, which indicate that the localization errors are smaller than 151.

4. Conclusions

The similarity of human anthropometric structures makes it possible to individualize HRTF through anthropometric
parameters. In this paper we have presented a hybrid database matching method, which combines the method of principal
component analysis, correlation analysis and multiple linear regressions. By the use of CIPIC database, we select 13
parameters from the provided 27 parameters and use them as the reference parameters for database matching. The
performance of the method has been tested by subjective localization experiments with 9 listeners. Besides comparing
with other published results, we also compare the results at the best match condition with those at the worst match
condition. The results have shown that in most cases the sound localization accuracy can be enhanced and the front–back
confusion rates can be reduced by using the hybrid method.

Like most other prediction methods, our method also needs to measure the subject’s anthropometric parameters, but
since a number of the parameters have been selected and reduced, the troublesome measurement process can be reduced
and can save some time. We will continue to study to what extent the number of parameters can be reduced in order to
enhance the practicality of the algorithm.

One of the limitations of the current research is that only the horizontal HRTF data have been used for the
individualization and listening tests, and in future work, the individualization method and localization experiments will be
applied into the median plane.
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